OPERATING INSTRUCTIONS

TYPE P-582 CAPACITANCE BRIDGE

GENERAL RADIO COMPANY 275 MASSACHUSETTS AVENUE, CAMERIDGE B9, MASS. TROwbridge 6-4400

DISTRICTOFFICES

NEW YORK

Broad Ave. at Linden, Ridgefield, N. J.
Telephone N.Y. WOrth 4-2722
N.J. WHitney 3-3140

PHILADELPHIA

1150 York Rd., Abington, Penna.
Telephone HAncock 4-7419

WASHINGTON

80551 3th St., Silver Spring, Md.
Telephone JUniper 5-1088

CHICAGO

6605 West North Ave., Oak Park, III.
Telephone Village 8-9400

LOS ANGELES

1000 N. Seward St., Los Angeles 38, Calif.
Telephone HOllywood 9-6201

SAN FRANCISCO

1182 Los Altos Ave., Los Altos, Calif.
Telephone WHitecliff 8-8233

CANADA

99 Floral Pkwy., Toronto 15, Ont.
Telephone CHerry 6-2171

REPAIR SERVICES

EAST COAST

General Radio Company
Service Department
22 Baker Ave., W. Concord, Mass.
Telephone EMerson 9-4400

MIDWEST

General Radio Company
Service Department
6605 West North Ave., Oak Park, Ill. Telephone Village 8-9400

WEST COAST

Western Instrument Co.
826 N. Victory Blvd., Burbank, Calif.
Telephone VIctoria 9-3013

CANADA

Bayly Engineering, Ltd.
First Street, Ajax, Ontario
Telephone Toronto EMpire 8-6866

OPERATING INSTRUCTIONS

TYPE P-582 CAPACITANCE BRIDGE

(TEST SET, CAPACITANCE BRIDGE, TTU24/E)

Form 975-A

May, 1958

GENERAL RADIO COMPANY

SPECIFICATIONS

RANGE	Capacitance: $5 \mu \mu \mathrm{f}$ to $0.011 \mu \mathrm{f}$ Dissipation Factor: 0 to 0.11.
ACCURACY:	Capacitance, see Figure 7. Variable capacitor on $\times 1$ Range, ± 0.4 $\mu \mu \mathrm{f}$ or $\pm 0.1 \%$, whichever is greater; on $\times 1 / 10$ Range, $\pm 0.04 \mu \mu \mathrm{f}$ or $\pm 0.1 \%$, whichever is greater. Decade capacitor, $\pm 0.1 \%$ on both ranges. Dissipation Factor: $\pm 2 \%$ of reading ± 0.0002.
OSCILLATOR:	Frequency: 400 cps $\pm 0.25 \%$. Output: 25 volts nominal. Distortion: less than 0.5%.
DETECTOR:	Sensitivity on amplifier alone: 10% scale deflection for $10-\mu \mathrm{v}$ input. Sensitivity of system: x1 MULTIPLIER position, 10% deflection for $0.05 \mu \mu \mathrm{f} \Delta \mathrm{C} ; \times 1 / 10$ MULTIPLIER position, 10% for 0.005 $\mu \mu \mathrm{f} \Delta \mathrm{C}$. Selectivity of amplifier alone: down 56 db at 800 cps , down 64 db at 60 cps . Selectivity of amplifier and bridge transformer: down 50 db at 800 cps, down 80 db at 60 cps .
EFFECT OF IMPEDANCE TO THIRD TERMINAL (CHASSIS):	Impedance from unshielded lead to chassis shunts the oscillator, and therefore causes no bridge error. Output voltage is reduced about 50% by shunt impedance of 5 kilohms or $0.1 \mu \mathrm{f}$. Impedance from coaxial lead to chassis shunts the bridge transformer. On the $\times 1$ MULTIPLIER position, there is negligible effect from a shunt of 1 kilohm or $0.1 \mu \mathrm{f}$. On the $\mathrm{x} 1 / 10 \mathrm{MULTI}$ PLIER position, there is negligible effect from 10 kilohms or $0.01 \mu \mathrm{f}$.
ACCESSORIES SUPPLIED:	For connection to Type P-579 Fuel Gage Tester, two unshielded cable assemblies and one common shielded assembly; for connection to Type 03 Fuel Gage Tester, one cable harness, including termination unit assembly; general -purpose three-terminal measurements, one coaxial and one unshielded cable assembly, with Type 874 connectors. Power cord is also supplied. (Refer to paragraph I.2.3 and Figure 18.)
POWER SUPPLY:	105 to $125 \mathrm{v}, 50$ to 60 cps . 30 watts input at $115-\mathrm{v}$ line.
DIMENSIONS:	Length $22-1 / 2$ in., height 14 in ., depth $12-3 / 4 \mathrm{in}$., over-all including cover.
WEIGHT:	55 lb .

GENERAL RADIO EXPERIMENTER reference: Vol 32 No. 9, February 1958.

TABLE OF CONTENTS

Section 1. INTRODUCTION 1
1.1 Purpose 1
1.2 Description 1
Section 2. PRINCIPLES OF OPERATION 2
2.1 Series and Parallel Equivalents 2
2.2 Direct and Stray Capacitances 2
2.3 Bridge Circuit 2
2.4 Stray Impedance to Chassis 3
2.5 Oscillator 3
2.6 Detector. 3
Section 3. OPERATING PROCEDURE 4
3.1 Installation 4
3.2 Measurement of Direct Capacitance of Shieíded Capacitor 4
3.3 Measurement of Unshielded Components 5
3.4 Measurement of Capacitance to Ground 5
3.5 Pickup 6
Section 4. SERVICE AND MAINTENANCE 6
4.1 General 6
4.2 Calibration 6
4.3 Internal Adjustments 6
Section 5. PARTS LIST 13

Figure 1. Type P-582 Capacitance Bridge.

TYPE P-582

CAPACITANCE BRIDGE

Section
 1
 INTRODUCTION

1.1 PURPOSE. The Type P-582 Capacitance Bridge (Figure 1) is a complete, self-contained bridge system for the measurement of direct capacitance and dissipation factor. Although designed especially to check the calibration of the Type MD-1 Field Vari-able-Capacitance Tester (GR Type P-579), it can be used for general capacitance measurements within the ranges specified.

1.2 DESCRIPTION.

1.2.1 CONTROLS. The controls on the panel of the

Type P-582 Capacitance Bridge are listed in Table 1 below.
1.2.2 CONNECTORS. The connectors on the panel of the Type P-582 Capacitance Bridge are listed in Table 2 below.
1.2.3 ACCESSORIES. Supplied with the Type P-582 Capacitance Bridge are a power cord and interconnecting cables listed in Table 3 and shown in Figure 18.

TABLE 1 - CONTROLS

Name

C1
C2
MULTIPLY TOTAL C BY
D
FINE ADJ (on C1)
GAIN
POWER

Type
Continuous rotary control 11-position selector switch
2-position toggle switch
Continuous rotary control
Continuous rotary control
Continuous rotary control
2-position toggle switch

Function
Adjusts variable capacitor. Adjusts value of decade capacitor. Multiplies value of C 1 and C 2 by 1 or $1 / 10$, as desired.

D balance adjustment; indicates unknown dissipation factor.
Vernier control on Cl (does not appreciably affect Cl calibration).
Adjusts detector gain.
Energizes instrument.

TABLE 2 - CONNECTIONS

Name

COAXIAL LEAD	M-H 415607B
UNSHIELDED LEAD	M-H 415607B
POWER	AN3106E12S3S
GND	GR Type 938-P Binding Post

TABLE 3-ACCESSORIES

Description	Type No.	Purpose
Cable Assembly, Unshielded (A)	P582-P1-20	Connection to Type P-579 Fuel Gage
Cable Assembly, Coaxial (B)	P582-P1-21	Tester.
Cable Assembly, Unshielded (C)	P582-P1-22	
Cable Assembly, Unshielded	P582-P2-20	General-purpose connections for
(UN-874)	three-terminal measurements.	
Cable Assembly, Coaxial	P582-P2-21	
(CO-874)		
Cable Harness (03) with Type	P582-P3-20	Connector to Type 03 Fuel Gage
722-DS9-P11 Termination Unit		Tester.
Assembly		

Section 2
 PRINCIPLES OF OPERATION

2.1 SERIES AND PARALLEL EQUIVALENTS. The Type P-582 measures series capacitance, C_{S}, and dissipation factor, D , as defined by the equivalent circuit of Figure 2, where $D=\omega R_{s} C_{S}$.

The formula for effective parallel capacitance, as defined by the equivalent circuit of Figure 3, is $C_{p}=\frac{C_{S}}{1+D^{2}}$. The value of D is independent of the equivalent circuit used to describe the unknown. For a parallel equivalent circuit, $D=\frac{1}{\omega R_{p} C_{p}}=\omega R_{s} C_{s}$.
2.2 DIRECT AND STRAY CAPACITANCES. Almost all physical capacitors are actually three-terminal networks where two terminals are those of the capacitor and the third consists of surrounding objects, such as shield, free space, or ground. Stray capacitance from each capacitor terminals to this third terminal will affect the value of the capacitor unless
provision is made to measure the capacitor by itself. The error introduced by the stray capacitance is of greatest importance when the main capacitance is small. This three-terminal system is shown in Figure 4. Here the direct capacitance between terminals 1 and 2 is C_{12}. Also present are stray capacitances C_{13} and C_{23} from each of these terminals to a third terminal. The Type P-582 Capacitance Bridge will measure C_{12} only, even though C_{13} and C_{23} may be much larger than C_{12}.
2.3 BRIDGE CIRCUIT. The basic bridge circuit is shown in Figure 5. The circuit is most easily explained if we consider the transformer a differential current detector. That is:

$$
\begin{equation*}
E_{o}=j \omega M\left(I_{x}-I_{s}\right) \tag{1}
\end{equation*}
$$

where M is the mutual inductance from one primary winding to the secondary. At null the voltages on the

Figure 2.

Figure 3.

Figure 4.

Figure 5.
primary windings are negligible because the transformer is tightly coupled. Therefore:

$$
\begin{equation*}
I_{x}=\frac{E_{i n}}{Z_{x}}=\frac{E_{i n}}{R_{x}+\frac{1}{j \omega C_{x}}}=E_{i n} \frac{j \omega C_{x}}{1+j D} \tag{2}
\end{equation*}
$$

and $I_{S}=\frac{E_{\text {in }}}{Z_{S}}$ where Z_{S} is the short-circuit transfer impedance $\left(\frac{1}{y_{21}}\right)$ of the three-element T network in the standard side of the bridge.

Since

$$
\begin{align*}
& Z_{s}=R_{1}\left(1+\frac{C_{b}}{C_{a}}\right)+\frac{1}{j \omega C_{a}}=\frac{1+j \omega R_{1}\left(C_{a}+C_{b}\right)}{j \omega C_{a}}, \tag{3}\\
& I_{s}=E_{i n} \frac{j \omega C_{a}}{1+j \omega R_{1}\left(C_{a}+C_{b}\right)} . \tag{4}
\end{align*}
$$

Since at null, $\mathrm{E}_{\mathrm{O}}=0$ and $\mathrm{I}_{\mathrm{X}}=\mathrm{I}_{\mathrm{s}}$:

$$
\begin{equation*}
\frac{j \omega C_{X}}{1+j D}=\frac{j \omega C_{a}}{1+j \omega R_{1}\left(C_{a}+C_{b}\right)} \tag{5}
\end{equation*}
$$

Thus the necessary conditions for null are

$$
\begin{equation*}
C_{x}=C_{a}, D_{x}=\omega R_{1}\left(C_{a}+C_{b}\right) \tag{6}
\end{equation*}
$$

The sum ($\mathrm{C}_{\mathrm{a}}+\mathrm{C}_{\mathrm{b}}$) is kept constant, so that R_{1} is proportional to D_{x}, and can therefore be calibrated directly in dissipation factor. The standard capacitor that forms the differential unit consisting of C_{a} and Cb_{b} is actually a $50-1100-\mu \mu \mathrm{f}$ differential variable air capacitor (C1, Figure 10) and a 1000-10,000$\mu \mu \mathrm{f}$ decade of silvered-mica capacitors (C2), which can be switched in to extend the capacitance range of the bridge upward. The small losses of these mica capacitors are balanced out by the resistive network consisting of resistors R2 to R9.

To extend the capacitance range downward, the turns ratio in the transformer (and thus the mutual inductance from the unknown primary winding) can be increased by a factor of 10 . Thus, with the MULTIPLY TOTAL C BY switch at $1 / 10$:

$$
\begin{equation*}
E_{0}=j \omega M\left(10 I_{x}-I_{s}\right) \tag{7}
\end{equation*}
$$

So that at null $\frac{10 j \omega C_{x}}{1+j D_{x}}=\frac{j \omega C_{a}}{1+j \omega R_{1}\left(C_{a}+C_{b}\right)}$

Therefore

$$
\begin{equation*}
C_{x}=\frac{C_{a}}{10}, D_{x}=\omega R_{1}\left(C_{a}+C_{b}\right) \tag{9}
\end{equation*}
$$

The accuracy of this turns ratio is high enough to result in negligible error.
2.4 STRAY IMPEDANCE TO CHASSIS. Stray impedance from either unknown terminal to the chassis of the instrument has negligible effect unless it is relatively low (refer to Specifications). An impedance across the oscillator merely loads down the oscillator, and this merely reduces sensitivity and eventually causes distortion.

Impedance across the transformer would have no effect if the transformer were ideal. The small effective series resistance and leakage inductance of the transformer will cause an error if the shunting impedance is low.

Because of the substantial immunity from effects of stray impedance, it is often possible to permit these strays to be actual components, and to measure the unknown while it is connected in a circuit.
2.5 OSCILLATOR. The oscillator circuit consists of a precise Wien bridge oscillator and a cathodefollower output stage. Precision frequency-determining components and more-than-usual loop gain provide high stability. A thermistor limits the amplitude of oscillation.
2.6 DETECTOR. The detector is a high-gain selective amplifier, which drives the panel meter. Two cascaded twin-T feedback circuits are used to obtain the high selectivity provided. The over-all rejection of low frequencies is enhanced by the nature of the bridge itself, whose sensitivity, from oscillator to transformer secondary, is proportional to ω^{2}. That
is: $\quad E_{0}=j \omega M\left(I_{x}-I_{s}\right)=-\omega^{2} M \Delta C$
The meter characteristic is made nonlinear by a shunt diode to facilitate balance when the bridge is off null. When the bridge is substantially unbalanced, the panel lights indicate the direction that the standard capacitance (C 1 and C2) should be varied to obtain a null.

Section 3 OPERATING PROCEDURE

3.1 INSTALLATION.

3.1.1 POWER CONNECTIONS. Connect the instrument to a 115 -volt, $50-60$-cycle power line by means of the power cord supplied. This cord is connected to the bridge through a watertight connector.
3.1.2 GROUNDING. A connection from a good ground to the panel terminal marked GND is generally desirable. However, if the unknown is completely shielded a ground is not necessary. If the unknown is not completely shielded, good grounding is necessary. Note that if one side of the unknown is grounded, the instrument should not be grounded. Refer to paragraph 3.3 for details on the measurement of unshielded and grounded capacitors.

3.2 MEASUREMENT OF DIRECT CAPACITANCE OF SHIELDED CAPACITOR.

3.2.1 CONNECTION TO UNKNOWN. Connect the unknown to the panel connectors marked COAXIAL LEAD and UNSHIELDED LEAD. Use coaxial lead for the connection to the COAXIAL LEAD terminal; the other lead may be shielded or unshielded. Figure 6 shows the normal setup for the measurement of a shielded component. Note that in this figure, the third terminal (the shield) is tied to the bridge chassis by means of the cable shield, so that a separate connection is not necessary.

Figure 6.
Due to the nature of this three-terminal measurement, the leads used may be quite long without causing error. Note that the above connection measures only C_{x}, and is independent of the values of stray capacitance shown.
3.2.2 BALANCING PROCEDURE. Adjust C1, C2, the MULTIPLY TOTAL C BY switch, and the D control to bring the meter indication as near zero as possible. Detector sensitivity can be adjusted by means
of the GAIN control. However, adjustment of this control is usually unnecessary, since the panel lights indicate the direction in which C 1 and C 2 should be adjusted when there is a substantial capacitive unbalance. A large D unbalance will not affect the light, so that if thelights are both off and the meter is upscale, an adjustment of the D dial is required.

A vernier capacitor, marked FINE ADJ, permits accurate low D measurements when the capacitance is small. The total adjustment here is about $\pm 0.03 \mu \mu \mathrm{f}$ (or $\pm 0.003 \mu \mu \mathrm{f}$ on the $1 / 10$ th range), so that the position of this control does not affect the calibration of C1.

Because of the range-extending features described in paragraph 2.3, there are two possible methods of balancing unknown capacitances from 110 to $1100 \mu \mu \mathrm{f}$: by Cl, with the multiplier at 1 and C 2 at zero; or by C 1 and C 2 , with the multiplier set at $1 / 10$. With the first method, the accuracy is $0.4 \mu \mu \mathrm{f}$ or 0.1%; the second method yields an over-all accuracy close to 0.1%, just as on the $1000-11,000-\mu \mu \mathrm{f}$ range.
3.2.3 COMPUTATION. The value of the unknown capacitor is C1 plus C2, plus their corrections, multiplied by 1 or $1 / 10$ as indicated by the multiplier switch. The value of D is indicated directly on the D dial. Note that the capacitance measured is the effective series capacitance, as defined in paragraph 2.1.

One turn of the capacitance dial corresponds to $50 \mu \mu \mathrm{f}$. The value of Cl is the dial reading plus the lower of the two drums readings above and below the fixed indicating line. Each small dial division represents $0.2 \mu \mu$ f.

The calibration correction chart on the panel gives a correction for each $50-\mu \mu \mathrm{f}$ increment of Cl and each step of C2. The correction used on C1 should be a simple interpolation (to the nearest 0.1 $\mu \mu \mathrm{f})$ between the corrections for the two drum readings involved. These corrections are determined for each instrument in the General Radio laboratory.

The following is a sample calculation of capacitance where the bridge is balanced with controls set as follows:

MULTIPLY TOTAL C BY set at $1 / 10$ C2 set at 2000

Figure 7.
Percent Accuracy
vs Capacitance Measured

C1 dial drum reads $21.4 \mu \mathrm{f}$, drum between 650 and $700 \mu \mu \mathrm{f}$
Cl correction at 650 assumed to be -0.2
C1 correction at 700 assumed to be +0.1
C2 correction at 2000 assumed to be +1.1

The unknown capacitance is therefore:

C1 dial	$21.4 \mu \mu \mathrm{f}$
C1 drum	+650.0
C1 correction	-0.1
C2 setting	2000.0
C2 correction $+\frac{1.1}{2}$	
Total	$2672.4 \mu \mu \mathrm{f}$
$2672.4 \times 1 / 10=$	$267.24 \mu \mu \mathrm{f}$

(Since the accuracy is limited to $\pm 0.1 \%$, the corrections in the above calculation are of little consequence.)
3.2.4 ACCURACY. The capacitance accuracy is a function of C1 and C2. The accuracy on C1 (with correction) is $\pm 0.1 \%$ or $\pm 0.4 \mu \mu \mathrm{f}$, whichever is greater, and the accuracy on C2 (with correction) is $\pm 0.1 \%$. The multiplier does not add appreciable error, so that the limiting precision is $\pm 0.04 \mu \mu \mathrm{f}$ when small capacitors are measured on the $1 / 10$ range. (See Figure 7.)

3.3 MEASUREMENT OF UNSHIELDED COMPO -

 NENTS. If a component is unshielded, the value of capacitance depends to some extent on the geometry of the connectors and on the proximity of equipment and personnel. These effects are negligible when large capacitors are measured, but are important when the unknown is small. For precise measurement, the instrument, as well as all nearby equipment and personnel, should be grounded for such measurements.Figure 8 shows some of the stray capacitances that must be considered in a precise measurement. If the GND terminal is connected to an external ground, C1 and C2 have no effect. However, capacitances to an ungrounded point P will have an effect.

The actual unknown is:

$$
C_{x}+C 6+\frac{C 3 C 4}{C 3+C 4+C 5}
$$

Note also that the value of C6, the capacitance between leads, depends greatly on the geometry of the connection and of the coaxial lead shield.

Figure 8.

3.4 MEASUREMENT OF CAPACITANCE TO

 GROUND. If one terminal of the unknown is grounded, the chassis of the bridge must be left ungrounded. The setup is shown in Figure 9. Capacitance from the instrument case to ground shunts the bridge oscillator and causes no difficulty. The chassis may still be used as a third terminal. If the point Q were tied to the chassis (or shield), C1 and C2 would have no effect. As drawn, the actual value of the unknown is:$$
C_{x}+\frac{C 1 C 2}{C 1+C 2}
$$

Figure 9.
3.5 PICKUP. Two types of pickup may affect balance in some instances. When unshielded measurements are made, it is desirable to expose as little as possible of the connections to the coaxial lead, and to ground the bridge and nearby equipment to avoid capacitive pickup. To avoid magnetic pickup in the bridge transformer, do not place large sources of low-frequency magnetic fields near the instrument.

Four-hundred cycle pickup could cause an er-
ror in measurement, although the frequencies of the bridge oscillator and of the external source would probably be different, and a slow "beating" would be noticed on the meter. Pickup from a 60-cycle source is troublesome mainly on the seventh harmonic (420 cps), which will pass through the amplifier with little rejection. Such pickup does not directly cause an error, but limits the null obtainable. Grounding as much nearby equipment and personnel as possible will reduce such pickup.

Section 4
 SERVICE AND MAINTENANCE

4.1 GENERAL. This information, together with that given in preceding sections, should enable the user to locate and correct ordinary difficulties resulting from normal use. Major service problems should be referred to our Service Department, which will furnish information as well as supply any replacement parts needed.

When notifying our Service Department of any difficulties in operation or service, please specify the serial and type numbers of the instrument. Also give a complete report of trouble encountered and steps taken to eliminate the trouble.

Before returning an instrument or part for repair, please write to our Service Department, requesting a Returned Material Tag, which includes shipping instructions. Use of this tag will insure proper handling and identification. A purchase order covering repair of material returned should also be forwarded to avoid unnecessary delay.
4.2 CALIBRATION. If the corrections given on the
calibration chart should in time be found in error, a new chart may be made. A high-precision capacitor should, of course, be used for such recalibration.

If the D scale is clearly in error, it can beadjusted by means of the eight screws on the rear of the rheostat, which deflect a cam mechanism to match the rheostat characteristic to that of the dial.

4.3 INTERNAL ADJUSTMENTS.

4.3.1 OSCILLATOR FREQUENCY ADJUSTMENT. The oscillator frequency is adjusted by means of R13, on the small etched board in the rear center of the shelf.
4.3.2 LOSS-BALANCING NETWORKS. The loss-balancing adjustments, which cancel out the smalllosses of the decade mica capacitor C2, are set to give a zero reading on the D dial when a good, dry air capacitor isused as the unknown. There is one adjustment for each of the four capacitors that make up the decade.

Figure 10. Schematic Diagram, P-582 Capacitance Bridge.

RESISTORS $1 / 2 \mathrm{~W}$ UNLESS OTHERWISE SPECIFIED.
RESISTANCE IN OHMS UNLESS OTHERWISE SPECIFIED.
CAPACITANCE VALUES ONE AND OVER IN MICRO- MICROFARADS, LESS THAN OAPACITANCE IN MICROFARADS, UNLESS OTHERWISE SPECIFIED.

SELECTIVE CIRCUIT
(WIEN)
$\overline{B U F F E} \bar{R}$
$\overline{P H A S E}$ INDICATOR
OSCILLATOR

Figure 11. Schematic Diagram of Oscillator and Phase Indicator Circuit.

Figure 12. Tube and Component Layout, Oscillator and Phase Indicator Circuit.

OSCILLATOR \& PHASE INDICATOR BOARD TEST VOLTAGES AND RESISTANCES

For notes see page 11 .

NOTE
RESISTORS I/2W UNLESS OTHERWISE SPECIFIED. RESISTANCE IN OHMS UNLESS OTHERWISE SPECIFIED.
CAPACITANCE VALUES ONE AND OVER IN MICRO-MICROFARADS, LESS THAN CAPACITANCE VALUES ONE AND OVER IN MICRO- MICR
ONE IN MICROFARADS, UNLESS OTHERWISE SPECIFIED.

Figure 13. Schematic Diagram of Detector Circuit.

Figure 14. Tube and Component Layout, Detector Circuit.

DETECTOR CIRCUIT BOARD
TEST VOLTAGES AND RESISTANCES

				VOLTS AC (RMS) ${ }^{\dagger}$			
$\begin{aligned} & \text { TUBE } \\ & \text { (TYPE) } \end{aligned}$	PIN	$\begin{aligned} & \text { TEST } \\ & \text { POINT } \end{aligned}$	$\begin{aligned} & \text { VOLTS } \\ & \text { DC } \end{aligned}$	Balance	$\begin{aligned} & \text { INCREASE } \\ & \text { C Lit } \end{aligned}$	$\begin{aligned} & \text { DECREASE } \\ & \text { C Lit } \end{aligned}$	$\begin{gathered} \text { RES } \\ \text { TO GND } \end{gathered}$
$\begin{gathered} \text { V301 } \\ \text { (5751) } \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { TP301 } \\ & \text { TP302 } \end{aligned}$	$\begin{gathered} 120 \\ 0 \\ 1.5 \\ 75 \\ 75 \\ 200 \\ 120 \\ 140 \\ 75 \end{gathered}$	$\begin{aligned} & \overline{3} \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \\ & 3 \\ & 3 \\ & 1.5 \\ & 0.7 \\ & 0.7 \\ & 3 \end{aligned}$	$\begin{aligned} & 3 \\ & 3 \\ & 1.5 \\ & 0.7 \\ & 0.7 \\ & 3 \end{aligned}$	$\begin{array}{rl} 250 & \mathrm{k} \\ 1 & \mathrm{k} \\ 2 & \mathrm{k} \\ 40 & \mathrm{k} \\ 40 & \mathrm{k} \\ 1 & \mathrm{M} \\ 600 & \mathrm{k} \\ 40^{\infty} & \mathrm{k} \end{array}$
$\begin{gathered} \text { V302 } \\ \text { (5751) } \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { TP303 } \\ & \text { TP304 } \\ & \text { TP305 } \end{aligned}$	$\begin{gathered} 200 \\ 0 \\ 1.5 \\ 75 \\ 75 \\ 200 \\ 120 \\ 140 \\ 75 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{array}{r} 10 \\ 1 \\ - \\ 3 \\ 3 \\ 10 \\ 10 \\ 8 \\ 3 \end{array}$	$\begin{array}{r} 10 \\ 1 \\ - \\ 3 \\ 3 \\ 10 \\ 10 \\ 8 \\ 3 \end{array}$	$\begin{array}{cc} { }_{c}^{\infty} & \\ 1.1 \mathrm{M} \\ 750 & \\ 40 & \mathrm{k} \\ 40 & \mathrm{k} \\ 100 & \mathrm{k} \\ 600 & \mathrm{k} \\ 40^{\infty} & \mathrm{k} \end{array}$
$\begin{gathered} \text { V303 } \\ \text { (5751) } \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 9 \end{aligned}$	$\begin{aligned} & \text { TP306 } \\ & \text { TP307 } \\ & \text { TP308 } \end{aligned}$	$\begin{gathered} 60 \\ 0 \\ 1.0 \\ 75 \\ 75 \\ 275 \\ 25 \\ 50 \\ 75 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline \\ & 3 \\ & 3 \\ & 0 \\ & 0 \\ & 0 \\ & 3 \end{aligned}$	$\begin{gathered} 10 \\ 0.5 \\ - \\ 3 \\ 3 \\ 7 \\ 10 \\ 10 \\ 3 \end{gathered}$	$\begin{gathered} 10 \\ 0.5 \\ - \\ 3 \\ 3 \\ 7 \\ 10 \\ 10 \\ 3 \end{gathered}$	${ }^{\infty}$ 110 k 1 k 40 k 40 k 5 k 1 M 25 k 40 k

NOTES
A-C voltages were measured with a GR Type 1803-B Vacuum-Tube Voltmeter. Values are rms for sinusoidal waveforms.

D-C voltages were measured with a GR Type $1803-B$ VTVM. A 20,000
ohm/volt meter may be used except at high-impedance points, designated by *.
Resistances may be measured with any good ohmmeter. Turn power off
and ground B^{+}(term 206 and 207).
Terminal $206 \mathrm{~B}+$ input voltage 300 v .
Terminal $207 \mathrm{~B}^{+}$input voltage 300 v .
\dagger - Voltage is dependent on bridge balance.
$\dagger \dagger-100-\mathrm{k}$ resistor between TP239 and pin 2, and between TP240 and pin 7.

Figure 15. Schematic Diagram of Power Supply Circuit.

Section

				$\begin{array}{\|l} \hline \text { PART NO. } \\ \text { (NOTE A) } \\ \hline \end{array}$					$\begin{aligned} & \text { PART NO. } \\ & \text { (NOTE A) } \\ & \hline \end{aligned}$					PART NO． （NOTE A）
	R101	3550 to 3700		433－406			Varistor					$0.47 \pm 10 \%$ 200dcwv		
	R102	$10 \mathrm{k} \pm 10 \%$		POSW－3		$\begin{aligned} & \text { R307 } \\ & \text { R308 } \end{aligned}$	$1 \mathrm{M} \pm 5 \%$	1／2w	$\left\|\begin{array}{l} \mathrm{P}-582-42 \\ \mathrm{REC}-20 \mathrm{BF} \end{array}\right\|$	$\begin{aligned} & \mathrm{C} 204 \\ & \mathrm{C} 205 \end{aligned}$		0.22 ± 10	200dcwv	$\begin{aligned} & \text { COW-16 } \\ & \text { COW-25 } \end{aligned}$
	R103	$5 \mathrm{k} \pm 10 \%$		POSW－3		R309	$\begin{array}{rl}100 & \mathrm{k} \pm 5 \% \\ 1 & \mathrm{M} \pm 5 \%\end{array}$	1／2w	REC-20BF		C206	0.01 ± 10	500dcwv	COM－1B
	R104	$5 \mathrm{k} \pm 10 \%$		POSW－3		R310		1／2w			C207	0.01	100dcwv	COW－17
	R105	5．$k \pm 10 \%$		POSW－3		R311	$100 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF	C208		0.01	500dcwv	COM－1B
	R106	$4.7 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R312	$40 \mathrm{k} \pm 1 \%$	1／4w		C209		0.1	100dcwv	COW－17
	R107	$100 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R313	$40 \mathrm{k} \pm 1 \%$	1／4w	$\begin{aligned} & \text { REF-65 } \\ & \text { REF-65 } \end{aligned}$	C210		0.01	500dcwv	COM－1B
	R201	$20 \mathrm{k} \pm 1 \%$	1／4w	REF－65		R314	$1 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF	C301		0.01	500dcwv	COM－18
	R202	$220 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R315	$100 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		C302	30	6dcwv	
	R203	$5 \mathrm{k} \pm 10 \%$		POSW－3		R316	$20 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		C303	$0.01 \pm 10 \%$	500dcwv	COM-18
	R204	$52.5 \mathrm{k} \pm 1 / 4 \%$		510－390		R317	$10 \mathrm{k} \pm 5$	1／2w	REC－20BF	\widehat{O}	C304	30	6dcwv	P－582－43
	R205	$40 \mathrm{k} \pm 1 / 4 \%$		510－390		R318	$1 \mathrm{M} \pm 5$	1／2w	$\left\lvert\, \begin{aligned} & \text { REC-20BF } \\ & \text { REC-20BE } \end{aligned}\right.$	$\begin{aligned} & 191 \\ & H \end{aligned}$	C305	$0.01 \pm 1 \%$	500dcwv	COM－1F
	R206	$1 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R319	$1 \mathrm{M} \pm$	1／2w		$\begin{aligned} & 0 \\ & z \end{aligned}$	C306	$0.02 \pm 1 \%$ 300dcwv		COM－1F
	R207	$36 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R320	$1 \mathrm{M} \pm 5 \%$	1／2w	$\begin{aligned} & \text { REC-20BF } \\ & \text { REC-20BF } \end{aligned}$		C307	$0.01 \pm 1 \% \quad 500 \mathrm{~d}$		COM－1F
	R208	$200 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R321	$100 \mathrm{k} \pm 5 \%$	1／2w			C30	$0.01 \pm 1 \% \quad 500 \mathrm{~d}$		COM－1B
	R209	$22 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R322	$100 \mathrm{k} \pm 5 \%$	1／2w	$\left\lvert\, \begin{aligned} & \text { REC-20BF } \\ & \text { REC-20BF } \end{aligned}\right.$	$\begin{aligned} & 0 \\ & \text { 巻 } \end{aligned}$	C309	$0.01 \pm 10 \%$	500 dcwv	COM－1B
	R210	$1 \mathrm{M} \pm 5 \%$	1／2w	REC－20BF		R323	$40 \quad \mathrm{k} \pm 1 \%$	$1 / 4 w$$1 / 4 w$	$\begin{aligned} & \text { REF-65 } \\ & \text { REF-65 } \end{aligned}$		$\begin{aligned} & \text { C310 } \\ & \text { C311 } \end{aligned}$	30 6dcwv		$\mathrm{P}-582-43$$\mathrm{COM}-1 \mathrm{~F}$
	R211	$1 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		$\begin{aligned} & \text { R324 } \\ & \text { R325 } \end{aligned}$	$\begin{array}{rrr} 40 & k & \pm 1 \% \\ 1 & k & \pm 5 \% \end{array}$			岂		$0.01 \pm 1 \%$	500 dcwv	
	R212	$2.2 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF				$\begin{aligned} & 1 / 4 \mathrm{w} \\ & 1 / 2 \mathrm{w} \end{aligned}$	$\left\|\begin{array}{l} \text { REF-65 } \\ \text { REC-20BF } \\ \text { P-582-42 } \end{array}\right\|$		C312	$0.01 \pm 1 \%$ 500dcwv		$\begin{aligned} & \text { COM-1F } \\ & \text { COM }-1 F \end{aligned}$
	R213	$200 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		$\begin{aligned} & \text { R326 } \\ & \text { R327 } \end{aligned}$	Varistor					$0.01 \pm 10 \% 500 \mathrm{dcwv}$		$\mathrm{COM}-1 \mathrm{~B}$
覙	R214	$1 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF			Varistor		$\begin{aligned} & \mathrm{P}-582-42 \\ & \mathrm{P}-582-42 \end{aligned}$	U	C314	$0.02 \pm 1 \%$	300dcwv	COM－1F
临	R215	$33 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R328	$\begin{array}{rll} 100 & \mathrm{k} & \pm 5 \% \\ 20 & \mathrm{k} & \pm 1 \% \end{array}$	1／2w	$\begin{aligned} & \mathrm{P}-582-42 \\ & \text { REC-20BF } \end{aligned}$		C315	$0.02 \pm 10 \%$	500dcwv	COM－1B
－	R216	$1 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R329		1／4w	REF－65		C316	$0.1 \pm 10 \%$	200dcwv	COW－16
Z	R217	$22 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R330	$1 \mathrm{M} \pm 5 \%$	1／2w	REC－20BF		C401	40	400dcwv	
0	R218	$22 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R331	$1 \mathrm{M} \pm 5 \%$	1／2w	REC－20BF		C402	40	400 dcwv	P－582－44
\％	R219	$15 \quad \pm 5 \%$	1／2w	REC－20BF		R332	4．7 M $\pm 5 \%$	1／2w	REC－20BF		C403	40	400 dcwv	P－582－44
5	R220	220 k － 5 5\％	1／2w	REC－20BF		R333	$100 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		C404	40	400dcwv	P－582－44
－	R221	$100 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R334	15 k ¢ 5 \％	1／2w	REC－20BF		C405	40	400dcwv	P－582－44
告	R222	$1 \mathrm{M} \pm 5 \%$	1／2w	REC－20BF		R335	$10 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		C406	40	400dcwv	P－582－44
	R223	$100 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R336	$5.1 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF					
	R224	$100 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R337	$33 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		D201	CRYSTAL DIOD		1N126
	R225	$220 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R338	$750 \pm 5 \%$	1／2w	REC－20BF		D202	CRYSTAL DIOD		1N126
	R226	$220 \mathrm{k} \pm 1 \%$	1／4w	REC－65		R401	$470 \pm 5 \%$	1w	REC－30BF		D203	CRYSTAL DIOD		1N126
	R227	$4.7 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R402	$4.7 \mathrm{k} \pm 5 \%$	lw	REC－30BF		D204	CRYSTAL DIOD		1N126
	R228	$1 \mathrm{M} \pm 5 \%$	1／2w	REC－20BF		R403	$2.2 \mathrm{k} \pm 5 \%$	1w	REC－30BF		F401	FUSE， 0.5 amp	Slo－Blo	FUF－1
	R229	$1 \mathrm{M} \pm 5 \%$	1／2w	REC－20BF		R404	$75 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		F402	FUSE， 0.5 amp	Slo－Blo	FUF－1
	R230	$100 \mathrm{k} \pm 1 \%$	1／4w	REF－65		R405	220 k $\pm 5 \%$	1／2w	REC－20BF		M1	METER		MEDS－85
	R231	$100 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		R406	$22 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		P201	PILOT LAMP		NE－51
	R232	$1 \mathrm{M} \pm 5 \%$	1／2w	REC－20BF							P202	PILOT LAMP		NE－51
	R233	$100 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF							P401	PLLOT LAMP，	Mazda \＃44	2LAP－939
	R234	220 k	1／2w	REC－20BF		C1 01	50－1100 $\mu \mathrm{f}$		722－S67－2		S101	SWITCH		SWRW－166
	R235	$100 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		C102	$0.001 \pm 0.1 \%$		505－S11－2		S102	SWITCH		SWT－320，NP
	R236			1605－41		C103	$0.002 \pm 0.1 \%$		505－S12－2		S401	SWITCH		SWT－333，NP
	R301	$10 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		C104	$0.004 \pm 0.1 \%$		505－S14－2		T102	TRANSFORMER	R，Bridge	345－472
	R302	$220 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		C105	$0.004 \pm 0.1 \%$		505－S14－2		T401	TRANSFORME	R，Power	485－493
	R303	$2.2 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		C106	0－0．06 $\mu \mu \mathrm{f}$		846－407		V201	5751	V302	5751
	R304	$22 \mathrm{k} \pm 5 \%$	1／2w	REC－20BF		C201	$0.01 \pm 0.5 \%$		505－S17		V202	12AT7WA	V303	5751
	R305	$1 \mathrm{M} \pm 20 \%$		POSC－7		C202	$0.005 \pm 0.5 \%$		505－S15	5	V203	5751	V401	6X4WA
	R306	Varistor		P－582－42		C203	$0.01 \pm 10 \%$	500dcwv	COM－1B	E	V301	5751		

NOTES：
（A）Type designations for resistors and capacitors are as follows：

COM－Capacitor，mica
COW－Capacitor，wax
POSC－Potentiometer，composition
（B）All resistances are in ohms except as otherwise indicated by k （kilohms） or M （megohms）．

POSW－Potentiometer，wire－wound
REC－Resistor，composition
REF－Resistor，film
（C）All capacitances are in micro－ farads except as otherwise indicated by $\mu \mu \mathrm{f}$（micromicrofarads）．

When ordering replacement components，be sure to include complete descrip－ tion as well as Part Number．（Example：R85，51k $\pm 10 \%, 1 / 2 w$, REC－20BF．）

Figure 18. Power and Interconnecting Cables
Supplied with P-582 Capacitance Bridge.

